- Category : SERVICE
Demolition (also known as razing, cartage, and wrecking) is the science and engineering in safely and efficiently tearing down of buildings and other artificial structures. Demolition contrasts with deconstruction, which involves taking a building apart while carefully preserving valuable elements for reuse purposes.
For small buildings, such as houses, that are only two or three stories high, demolition is a rather simple process. The building is pulled down either manually or mechanically using large hydraulic equipment: elevated work platforms, cranes, excavators or bulldozers. Larger buildings may require the use of a wrecking ball, a heavy weight on a cable that is swung by a crane into the side of the buildings. Wrecking balls are especially effective against masonry, but are less easily controlled and often less efficient than other methods. Newer methods may use rotational hydraulic shears and silenced rock-breakers attached to excavators to cut or break through wood, steel, and concrete. The use of shears is especially common when flame cutting would be dangerous.
Before any demolition activities can take place, there are many steps that must be carried out beforehand, including performing asbestos abatement, removing hazardous or regulated materials, obtaining necessary permits, submitting necessary notifications, disconnecting utilities, rodent baiting and the development of site-specific safety and work plans.
The typical razing of a building is accomplished as follows:
- Hydraulic excavators may be used to topple one- or two-story buildings by an undermining process. The strategy is to undermine the building while controlling the manner and direction in which it falls.
- The demolition project manager/supervisor will determine where undermining is necessary so that a building is pulled in the desired manner and direction.
- The walls are typically undermined at a building’s base, but this is not always the case if the building design dictates otherwise. Safety and cleanup considerations are also taken into account in determining how the building is undermined and ultimately demolished.
In some cases a crane with a wrecking ball is used to demolish the structure down to a certain manageable height. At that point undermining takes place as described above. However, crane mounted demolition balls are rarely used within demolition due to the uncontrollable nature of the swinging ball and the safety implications associated.
High reach demolition excavators are more often used for tall buildings where explosive demolition is not appropriate or possible. Excavators with shear attachments are typically used to dismantle steel structural elements. Hydraulic hammers are often used for concrete structures and concrete processing attachments are used to crush concrete to a manageable size, and to remove reinforcing steel. For tall concrete buildings, where neither explosive nor high reach demolition with an excavator is safe or practical, the “inside-out” method is used, whereby remotely operated mini-excavators demolish the building from the inside, whilst maintaining the outer walls of the building as a scaffolding, as each floor is demolished.
To control dust, fire hoses are used to maintain a wet demolition. Hoses may be held by workers, secured in fixed location, or attached to lifts to gain elevation.
Loaders or bulldozers may also be used to demolish a building. They are typically equipped with “rakes” (thick pieces of steel that could be an I-beam or tube) that are used to ram building walls. Skid loaders and loaders will also be used to take materials out and sort steel.
The technique of Vérinage is used in France to weaken and buckle the supports of central floors promoting the collapse of the top part of a building onto the bottom resulting in a rapid, symmetrical, collapse.[2]
The Japanese company Kajima Construction has developed a new method of demolishing buildings which involves using computer-controlled hydraulic jacks to support the bottom floor as the supporting columns are removed. The floor is lowered and this process is repeated for each floor. This technique is safer and more environmentally friendly, and is useful in areas of high population density.[3]